题目内容

如图1所示,已知直线与x轴、y轴分别交于A、C两点,抛物线经过A、C两点,点B是抛物线与x轴的另一个交点,当时,y取最大值.

(1)求抛物线和直线的解析式;
(2)设点P是直线AC上一点,且,求点P的坐标;
(3)若直线与(1)中所求的抛物线交于M、N两点,问:
①是否存在a的值,使得∠MON=900?若存在,求出a的值;若不存在,请说明理由;
②猜想当∠MON>900时,a的取值范围(不写过程,直接写结论).
(参考公式:在平面直角坐标系中,若M(x1,y1),N(x2,y2),则M,N两点间的距离为
(1)(2)(3)①存在②当时,∠MON>900
解:(1)∵当时,取最大值
 ,解得
∴抛物线的解析式为
,解得 ,∴A(-3,0),B(2,0)。
令x=0,得,∴C(0,6)。
将A、C的坐标代入,得
,解得
∴直线AC的解析式为
(2)分两种情况:
①点P在线段AC上时,过P作PH⊥x轴,垂足为H,

,∴
∵PH∥CP,∴△APH∽△ACO。
,即
。∴

②点P在线段CA的延长线上时,过P作PG⊥x轴,垂足为G,     

,∴
∵PG∥CO,∴△APG∽△ACO。
,即
。∴

综上所述,点P的坐标为
(3)①存在。
假设存在a的值,使直线与(1)中所求的抛物线交于M(x1,y1),N(x2,y2)两点(M在N的左侧),使得∠MON=900




∵∠MON=900,∴
。∴
,即,解得
∴存在使得∠MON=900
②当时,∠MON>900
(1)根据当时,取最大值列式求出b、c,从而得到抛物线的解析式;由抛物线的解析式得到A,C的坐标,由待定系数法求出直线AC的解析式。
(2)分点P在线段AC上和两种情况讨论即可。
(3)①应用一元二次方程根与系数的关系和勾股定理求解。
②如图,

时,∠MON=900
时,∠MON<900
时,∠MON>900
练习册系列答案
相关题目
某企业为手机产业基地提供手机配件,受人民币走高的影响,从去年1至9月,该配件的原材料价格一路攀升,每件配件的原材料价格y1(元)与月份x(1≤x≤9,且x取整数)之间的函数关系如下表:
月份x
1
2
3
4
5
6
7
8
9
价格y1(元/件)
56
58
60
62
64
66
68
70
72
随着国家调控措施的出台,原材料价格的涨势趋缓,10至12月每件配件的原材料价格y2(元)与月份x(10≤x≤12,且x取整数)之间存在如图所示的变化趋势:

(1)请观察题中的表格,用所学过的一次函数、反比例函数或二次函数的有关知识,直接写出y1与x之间的函数关系式,根据如图所示的变化趋势,直接写出y2与x之间满足的一次函数关系式;
(2)若去年该配件每件的售价为100元,生产每件配件的人力成本为5元,其它成本3元,该配件在1至9月的销售量p1(万件)与月份x满足函数关系式(1≤x≤9,且x取整数),10至12月的销售量p2(万件)与月份x满足函数关系式(10≤x≤12,且x取整数)。求去年哪个月销售该配件的利润最大,并求出这个最大利润;
(3)今年1月,每件配件的原材料价格比去年12月上涨6元,人力成本比去年增加20%,其它成本没有变化,该企业将每件配件的售价在去年的基础上提高a%,与此同时1月份销售量在去年12月的基础上减少8a%,这样,在保证1月份上万件配件销量的前提下,完成了利润17万元的任务,请你计算出a的值。

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网