题目内容
【题目】如图,在直角坐标系中,以点P为圆心的圆弧与x轴交于A、B两点,已知P(4,2)和A(2,0),则点B的坐标是_____.
【答案】(6,0)
【解析】连接PA、PB.过点P作PD⊥AB于点D.根据两点间的距离公式求得PA=2;然后由已知条件“点P为圆心的圆弧与x轴交于A、B两点”知PA=PB=2;再由垂径定理和勾股定理求得AD=1/2AB=2,所以AB=4,由两点间的距离公式知点B的坐标.
解:连接PA、PB.过点P作PD⊥AB于点D.
∵P(4,2)、A(2,0),
∴PA=,PD=2;
∵点P为圆心的圆弧与x轴交于A、B两点,
∴PA=PB=2,AB是垂直于直径的弦,
∴AD=DB;
在直角三角形PDA中,AD2=AP2-PD2,
∴AD=2;
∴AB=4,
∴B(6,0).
故答案为:B(6,0).
练习册系列答案
相关题目
【题目】由于雾霾天气频发,市场上防护口罩出现热销.某药店准备购进一批两种不同型号口罩进行销售.下表是甲、乙两人购买两种型号口罩的情况:
A型号数量(单位:个) | B型号数量(单位:个) | 总售价(单位:元) | |
甲 | 1 | 3 | 26 |
乙 | 3 | 2 | 29 |
(1)求一个型口罩和一个型口罩的售价各是多少元?
(2)药店准备购进这两种型号的口罩共50个,其中型口罩数量不少于35个,且不多于型口罩的3倍,有几种购买方案?请写出购买方案.
(3)在(2)的条件下,药店在销售完这批口罩后,总售价能否达到282元?