题目内容
【题目】如图1,在四边形ABCD中,点E、F分别是AB、CD的中点,过点E作AB的垂线,过点F作CD的垂线,两垂线交于点G,连接AG、BG、CG、DG,且∠AGD=∠BGC.
(1)求证:AD=BC;
(2)求证:△AGD∽△EGF;
(3)如图2,若AD、BC所在直线互相垂直,求的值.
【答案】(1)见解析;(2)见解析;(3)
【解析】
试题(1)根据线段垂直平分线上的点到线段两个端点的距离相等可得GA=GB,GD=GC.由“SAS”可判定△AGD≌△BGC根据全等三角形的对应边相等即可得AD=BC.(2)根据两边对应成比例且夹角相等的两个三角形相似可判定△AGB∽△DGC,再由相似三角形对应高的比等于相似比可得,再证得∠AGD=∠EGF,根据两边对应成比例且夹角相等的两个三角形相似即可判定△AGD∽△EGF.(3)如图1,延长AD交GB于点M,交BC的延长线于点H,则AH⊥BH.由△AGD≌△BGC可知∠GAD=∠GBC.
在△GAM和△HBM中,由∠GAD=∠GBC,∠GMA=∠HMB可证得∠AGB=∠AHB=90°,根据等腰三角形三线合一的性质可得∠AGE =45°,即可得出根据相似三角形对应边的比相等即可得
试题解析:(1)证明:∵GE是AB的垂直平分线,∴GA=GB.同理GD=GC.
在△AGD和△BGC中,∵GA=GB,∠AGD=∠BGC,GD=GC, ∴△AGD≌△BGC.∴AD=BC.
(2) 证明:∵∠AGD=∠BGC, ∴∠AGB=∠DGC.
在△AGB和△DGC中,,∠AGB=∠DGC, ∴△AGB∽△DGC.
∴,又∠AGE=∠DGF,∴∠AGD=∠EGF,∴△AGD∽△EGF.
(3)解:如图1,延长AD交GB于点M,交BC的延长线于点H,则AH⊥BH.
由△AGD≌△BGC,知∠GAD=∠GBC,
在△GAM和△HBM中,∠GAD=∠GBC,∠GMA=∠HMB.
∴∠AGB=∠AHB=90°,
∴∠AGE=∠AGB=45°,
∴
又△AGD∽△EGF,
∴
(本小题解法有多种,如可按图2、图3做辅助线求解,过程略)