题目内容
【题目】如图,在△ABC中,∠ACB=90°,点D,E在AB上,且AF垂直平分CD,BG垂直平分CE.(1)求∠ECD的度数;(2)若∠ACB为α,则∠ECD的度数能否用含α的式子来表示.
【答案】见解析
【解析】试题分析:
(1)由AF垂直平分CD可得AC=AD,再由等腰三角形的“三线合一”可得∠FAB=∠CAB,同理可得∠GBA=∠CBA;如图,设AF、BG相交于点O,则∠GOF=∠AOB=180°-∠FAB-∠GBA=180°-(180°-∠ACB)=135°,由此在四边形GOFC中可得∠ECD=360°-∠CGO-∠CFO-∠GOF=360°-90°-90°-∠GOF=180°-135°=45°.
(2)思路同(1)只需把∠ACB=90°换成∠ACB= 可解得∠DCE=90°- .
试题解析:
(1)如图,设AF、BG相交于点O,连接CO,
∵AF垂直平分CD,
∴AC=AD,∠CFO=90°,∴∠FAB=∠CAB.
同理可得:∠CGO=90°,∠GBA=∠CBA.
∴∠GOF=∠AOB=180°-∠FAB-∠GBA=180°-(180°-∠ACB)=90°+∠ACB=135°,
∵四边形GOFC的内角和为360°,
∴∠ECD=360°-∠CGO-∠CFO-∠GOF
=360°-90°-90°-∠GOF
=180°-135°
=45°.
(2)同(1)可得∠GOF=90°+∠ACB=90°+ ,∠CFO=90°,∠CGO=90°,
∵四边形GOFC的内角和为360°,
∴∠ECD=360°-∠CGO-∠CFO-∠GOF
=360°-90°-90°-∠GOF
=180°-(90°+ )
=90°- .
【题目】为了提高学生书写汉字的能力,增强保护汉字的意识,我市举办了首届“汉字听写大赛”,经选拔后有50名学生参加决赛,这50名学生同时听写50个汉字,若每正确听写出一个汉字得1分,根据测试成绩绘制出部分频数分布表和部分频数分布直方图如图表:
组别 | 成绩x分 | 频数(人数) |
第1组 | 25≤x<30 | 4 |
第2组 | 30≤x<35 | 8 |
第3组 | 35≤x<40 | 16 |
第4组 | 40≤x<45 | a |
第5组 | 45≤x<50 | 10 |
请结合图表完成下列各题:
(1)求表中a的值;
(2)请把频数分布直方图补充完整;
(3)若测试成绩不低于40分为优秀,则本次测试的优秀率是多少?