题目内容

【题目】【阅读理解】

我们知道,1+2+3+…+n=,那么12+22+32+…+n2结果等于多少呢?

在图1所示三角形数阵中,第1行圆圈中的数为1,即12,第2行两个圆圈中数的和为2+2,即22;第nn个圆圈中数的和为,即n2,这样,该三角形数阵中共有个圆圈,所有圆圈中数的和为12+22+32+…+n2

【规律探究】

将三角形数阵经两次旋转可得如图2所示的三角形数阵,观察这三个三角形数阵各行同一位置圆圈中的数(如第n﹣1行的第一个圆圈中的数分别为n﹣1,2,n),发现每个位置上三个圆圈中数的和均为   ,由此可得,这三个三角形数阵所有圆圈中数的总和为:3(12+22+32+…+n2)=   ,因此,12+22+32+…+n2=   

【解决问题】

根据以上发现,计算: 的结果为   

【答案】【规律探究】2n+1 【解决问题】1345.

【解析】试题分析:【规律探究】将同一位置圆圈中的数相加即可,所有圈中的数的和应等于同一位置圆圈中的数的和乘以圆圈个数,据此可得,每个三角形数阵和即为三个三角形数阵和的,从而得出答案;

【解决问题】运用以上结论,将原式变形为,化简计算即可得.

试题解析:【规律探究】由题意知,每个位置上三个圆圈中数的和均为n﹣1+2+n=2n+1;

=

故答案为:2n+1

【解决问题】

=.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网