题目内容
【题目】在梯形中,
,点
在直线
上,联结
,过点
作
的垂线,交直线
与点
,
(1)如图1,已知,:求证:
;
(2)已知:,
① 当点在线段
上,求证:
;
② 当点在射线
上,①中的结论是否成立?如果成立,请写出证明过程;如果不成立,简述理由.
【答案】(1)证明见解析;
(2)①证明见解析;②结论仍然成立,证明见解析.
【解析】
(1)过F作FM⊥AD,交AD的延长线于点M,通过AAS证明△ABE≌△EMF,根据全等三角形的性质即可得出AB=AD;
(2)①在AB上截取AG=AE,连接EG.通过ASA证明△BGE≌△EDF,根据全等三角形的性质即可得出BE=EF;
②
(1)如图:
过F作FM⊥AD,交AD的延长线于点M,
∴∠M=90°,
∵∠BEF=90°,
∴∠AEB+MEF=90°,
∵∠A=90°,
∴∠ABE+∠AEB=90°,
∴∠MEF=∠ABE,
在△ABE和△EMF中,
,
∴△ABE≌△EMF(AAS)
∴AB=ME,AE=MF,
∵AM∥BC,∠C=45°,
∴∠MDF=∠C=45°,
∴∠DFM=45°,
∴DM=FM,
∴DM=AE,
∴DM+ED=AE+ED,
即AD=EM,
∴AB=AD;
(2)①证明:如图,
在AB上截取AG=AE,连接EG,则∠AGE=∠AEG,
∵∠A=90°,∠A+∠AGE+∠AEG=180°,
∴∠AGE=45°,
∴∠BGE=135°,
∵AD∥BC,
∴∠C+∠D=180°,
又∵∠C=45°,
∴∠D=135°,
∴∠BGE=∠D,
∵AB=AD,AG=AE,
∴BG=DE,
∵EF⊥BE,
∴∠BEF=90°,
又∵∠A+∠ABE+∠AEB=180°,
∠AEB+∠BEF+∠DEF=180°,
∠A=90°,
∴∠ABE=∠DEF,
在△BGE与△EDF中,
,
∴△BGE≌△EDF(ASA),
∴BE=EF;
②结论仍然成立,证明如下,
如图:
延长BA到点G,使BG=ED,连接EG,
则△EAG是等腰直角三角形,
∴∠EGB=45°,
∵ED∥BC,∠C=45°,
∴∠FDE=45°,
∴∠FDE=45°,
∴∠EGB=∠FDE,
∵∠A=90°,
∴∠AEB+∠ABE=90°,
∵EF⊥EB,
∴∠FED+∠AEB=90°,
∴∠AEB=∠FED,
在△BGE与△EFD中,
,
∴△BGE≌△EDF(ASA),
∴BE=EF.
![](http://thumb.zyjl.cn/images/loading.gif)