题目内容

【题目】如图1,经过原点O的抛物线(a0)与x轴交于另一点A(,0),在第一象限内与直线y=x交于点B(2,t).

(1)求这条抛物线的表达式;

(2)在第四象限内的抛物线上有一点C,满足以B,O,C为顶点的三角形的面积为2,求点C的坐标;

(3)如图2,若点M在这条抛物线上,且MBO=ABO,在(2)的条件下,是否存在点P,使得POC∽△MOB?若存在,求出点P的坐标;若不存在,请说明理由.

【答案】(1);(2)C(1,﹣1);(3)存在P坐标为()或(﹣).

【解析】

试题分析:(1)由直线解析式可求得B点坐标,由A、B坐标,利用待定系数法可求得抛物线的表达式;

(2)过C作CDy轴,交x轴于点E,交OB于点D,过B作BFCD于点F,可设出C点坐标,利用C点坐标可表示出CD的长,从而可表示出BOC的面积,由条件可得到关于C点坐标的方程,可求得C点坐标;

(3)设MB交y轴于点N,则可证得ABO≌△NBO,可求得N点坐标,可求得直线BN的解析式,联立直线BM与抛物线解析式可求得M点坐标,过M作MGy轴于点G,由B、C的坐标可求得OB和OC的长,由相似三角形的性质可求得的值,当点P在第一象限内时,过P作PHx轴于点H,由条件可证得MOG∽△POH,由==的值,可求得PH和OH,可求得P点坐标;当P点在第三象限时,同理可求得P点坐标.

试题解析:

(1)B(2,t)在直线y=x上,t=2,B(2,2),把A、B两点坐标代入抛物线解析式可得,解得抛物线解析式为

(2)如图1,过C作CDy轴,交x轴于点E,交OB于点D,过B作BFCD于点F,点C是抛物线上第四象限的点,可设C(t,2t2﹣3t),则E(t,0),D(t,t),OE=t,BF=2﹣t,CD=t﹣(2t2﹣3t)=﹣2t2+4t,SOBC=SCDO+SCDB=CDOE+CDBF=(﹣2t2+4t)(t+2﹣t)=﹣2t2+4t,∵△OBC的面积为2,﹣2t2+4t=2,解得t1=t2=1,C(1,﹣1);

(3)存在.设MB交y轴于点N,如图2B(2,2),∴∠AOB=NOB=45°,在AOB和NOB中∵∠AOB=NOB,OB=OB,ABO=NBO,∴△AOB≌△NOB(ASA),ON=OA=N(0,),可设直线BN解析式为y=kx+,把B点坐标代入可得2=2k+,解得k=直线BN的解析式为,联立直线BN和抛物线解析式可得,解得M(),C(1,﹣1),∴∠COA=AOB=45°,且B(2,2),OB=,OC=∵△POC∽△MOB, ==2,POC=BOM,当点P在第一象限时,如图3,过M作MGy轴于点G,过P作PHx轴于点H,如图3

∵∠COA=BOG=45°,∴∠MOG=POH,且PHO=MGO,∴△MOG∽△POH,===2,M(),MG=,OG=PH=MG=,OH=OG=P();

当点P在第三象限时,如图4,过M作MGy轴于点G,过P作PHy轴于点H,同理可求得PH=MG=,OH=OG=P(﹣);

综上可知存在满足条件的点P,其坐标为()或(﹣).

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网