题目内容
【题目】如图①,正方形的边长为,动点从点出发,在正方形的边上沿运动,设运动的时间为,点移动的路程为,与的函数图象如图②,请回答下列问题:
(1)点在上运动的时间为 ,在上运动的速度为
(2)设的面积为,求当点在上运动时,与之间的函数解析式;
(3)①下列图表示的面积与时间之间的函数图象是 .
②当 时,的面积为
【答案】(1)6,2;(2);(3)①C;②4或13.
【解析】
(1)由图象得:点P在AB上运动的时间为6s,在CD上运动的速度为6÷(15-12)=2(cm/s);
(2)当点P在CD上运动时,由题意得:PC=2(t-12),得出PD=30-2t,由三角形面积公式即可得出答案;
(3)①当点P在AB上运动时,y与t之间的函数解析式为y=3t;当点P在BC上运动时,y与t之间的函数解析式为y=18;当点P在CD上运动时,y与t之间的函数解析式为y=-6t+90,即可得出答案;
②由题意分两种情况,即可得出结果.
(1)由题意得:点在上运动的时间为,
在上运动的速度为;
故答案为:6,2;
(2)当点在上运动时,
由题意得:,
,
的面积为,
即与之间的函数解析式为;
(3)①当点在上运动时,与之间的函数解析式为;
当点在上运动时,与之间的函数解析式为;
当点在上运动时,与之间的函数解析式为,
表示的面积与时间之间的函数图象是,
故答案为:;
②由题意得:当时,;
当时,;
即当或时,的面积为;
故答案为:4或13.
练习册系列答案
相关题目