题目内容
【题目】如图,在△ABC中,∠C=90°,AD平分∠CAB,交CB于点D,过点D作DE⊥AB于点E.
(1)求证:AC=AE;
(2)若点E为AB的中点,CD=4,求BE的长.
【答案】(1)(证明见解析2)4
【解析】
试题分析:(1)求出△ACD≌△AED,根据全等三角形的性质得出即可;
(2)求出AD=BD,推出∠B=∠DAB=∠CAD,求出∠B=30°,即可求出BD=2CD=8,根据勾股定理求出即可.
(1)证明:∵在△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB,
∴CD=DE,∠AED=∠C=90°,∠CAD=∠EAD,
在△ACD和△AED中
∴△ACD≌△AED,
∴AC=AE;
(2)解:∵DE⊥AB,点E为AB的中点,
∴AD=BD,
∴∠B=∠DAB=∠CAD,
∵∠C=90°,
∴3∠B=90°,
∴∠B=30°,
∵CD=DE=4,∠DEB=90°,
∴BD=2DE=8,
由勾股定理得:BE==4.
练习册系列答案
相关题目
【题目】李老师为了了解学生暑期在家的阅读情况,随机调查了20名学生某一天的阅读小时数,具体情况统计如下:
阅读时间 (小时) | 2 | 2.5 | 3 | 3.5 | 4 |
学生人数(名) | 1 | 2 | 8 | 6 | 3 |
则关于这20名学生阅读小时数的说法正确的是( )
A. 众数是8 B. 中位数是3 C. 平均数是3 D. 方差是0.34