题目内容
如图,在△ABC中,∠ABC、∠ACB的平分线相交于点D,∠BDC=120°,则∠A=______.
∵在△BCD中,∠DBC+∠DCB+∠BDC=180°
∴∠DBC+∠DCB=180°-120°=60°.
∵BD和CD是∠ABC,∠ACB的角平分线,
∴∠DBC=
∠ABC,∠DCB=
∠ACB
∴∠DBC+∠DCB=
(∠ABC+∠ACB)
∴∠ABC+∠ACB=2(∠DBC+∠DCB)=2×60°=120°.
又∵△ABC中,∠ABC+∠ACB+∠A=180°,
∴∠A=180°-(∠ABC+∠ACB)=180°-120°=60°.
故答案是:60°.
∴∠DBC+∠DCB=180°-120°=60°.
∵BD和CD是∠ABC,∠ACB的角平分线,
∴∠DBC=
1 |
2 |
1 |
2 |
∴∠DBC+∠DCB=
1 |
2 |
∴∠ABC+∠ACB=2(∠DBC+∠DCB)=2×60°=120°.
又∵△ABC中,∠ABC+∠ACB+∠A=180°,
∴∠A=180°-(∠ABC+∠ACB)=180°-120°=60°.
故答案是:60°.
练习册系列答案
相关题目