题目内容

【题目】如图,点O是边长为4 的等边△ABC的内心,将△OBC绕点O逆时针旋转30°得到△OB1C1 , B1C1交BC于点D,B1C1交AC于点E,则DE=

【答案】6﹣2
【解析】解:令OB1与BC的交点为F,B1C1与AC的交点为M,过点F作FN⊥OB于点N,如图所示.
∵将△OBC绕点O逆时针旋转30°得到△OB1C1
∴∠BOF=30°,
∵点O是边长为4 的等边△ABC的内心,
∴∠OBF=30°,OB= AB=4,
∴△FOB为等腰三角形,BN= OB=2,
∴BF= = =OF.
∵∠OBF=∠OB1D,∠BFO=∠B1FD,
∴△BFO∽△B1FD,

∵B1F=OB1﹣OF=4﹣
∴B1D=4 ﹣4.
在△BFO和△CMO中,有
∴△BFO≌△CMO(ASA),
∴OM=BF= ,C1M=4﹣
在△C1ME中,∠C1ME=∠MOC+∠MCO=60°,∠C1=30°,
∴∠C1EM=90°,
∴C1E=C1Msin∠C1ME=(4﹣ )× =2 ﹣2.
∴DE=B1C1﹣B1D﹣C1E=4 ﹣(4 ﹣4)﹣(2 ﹣2)=6﹣2
所以答案是:6﹣2
【考点精析】通过灵活运用等边三角形的性质和三角形的内切圆与内心,掌握等边三角形的三个角都相等并且每个角都是60°;三角形的内切圆的圆心是三角形的三条内角平分线的交点,它叫做三角形的内心即可以解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网