题目内容
【题目】若存在正实数m,使得关于x的方程x+a(2x+2m﹣4ex)[ln(x+m)﹣lnx]=0成立,其中e为自然对数的底数,则实数a的取值范围是( )
A.(﹣∞,0)
B.
C.
D.
【答案】C
【解析】解:由x+a(2x+2m﹣4ex)[ln(x+m)﹣lnx]=0得 x+2a(x+m﹣2ex)ln =0,
即1+2a( ﹣2e)ln =0,
即设t= ,则t>0,
则条件等价为1+2a(t﹣2e)lnt=0,
即(t﹣2e)lnt=﹣ 有解,
设g(t)=(t﹣2e)lnt,
g′(t)=lnt+1﹣ 为增函数,
∵g′(e)=lne+1﹣ =1+1﹣2=0,
∴当t>e时,g′(t)>0,
当0<t<e时,g′(t)<0,
即当t=e时,函数g(t)取得极小值为:g(e)=(e﹣2e)lne=﹣e,
即g(t)≥g(e)=﹣e,
若(t﹣2e)lnt=﹣ 有解,
则﹣ ≥﹣e,即 ≤e,
则a<0或a≥ ,
∴实数a的取值范围是(﹣∞,0)∪[ ,+∞).
故选:C.
【考点精析】根据题目的已知条件,利用特称命题的相关知识可以得到问题的答案,需要掌握特称命题:,,它的否定:,;特称命题的否定是全称命题.
【题目】襄阳农科所对冬季昼夜温差大小与某反季节大豆新品种发芽多少之间的关系进行分析研究,他们分别记录了12月1日至12月5日的每天昼夜温度与实验室每天每100颗种子中的发芽数,得到如下数据:
日期 | 12月1日 | 12月2日 | 12月3日 | 12月4日 | 12月5日 |
温差x(℃) | 10 | 11 | 13 | 12 | 8 |
发芽数y(颗) | 23 | 26 | 32 | 26 | 16 |
襄阳农科所确定的研究方案是:先从这5组数据中选取2组,用剩下的3组数据求线性回归方程,再对被选取的2组数据进行检验.
(1)求选取的2组数据恰好是不相邻的2天数据的概率;
(2)若选取的是12月1日与12月5日这两组数据,情根据12月2日至12月4日的数据,求y关于x的线性回归方程 = x+ ;
(3)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过1颗,则认为得到的线性回归方程是可靠的,试问(2)中所得的线性回归方程是否可靠? 注: = = , = ﹣ .