题目内容

【题目】已知∠AOB=60°,半径为3cm的⊙P沿边OA从右向左平行移动,与边OA相切的切点记为点C.
(1)⊙P移动到与边OB相切时(如图),切点为D,求劣弧 的长;
(2)⊙P移动到与边OB相交于点E,F,若EF=4 cm,求OC的长.

【答案】
(1)解:连接DP、CP,

∵∠AOB=60°,半径为3cm的⊙P沿边OA从右向左平行移动,与边OA相切的切点记为点C.

∴∠DPC=120°,

∴劣弧 的长为: =2πcm


(2)解:可分两种情况,

①如图2,当P在∠AOB内部,连接PE,PC,过点P做PM⊥EF于点M,延长CP交OB于点N,

∵EF=4 cm,∴EM=2 cm,

在Rt△EPM中,PM= =1cm,

∵∠AOB=60°,∴∠PNM=30°,

∴PN=2PM=2cm,

∴NC=PN+PC=5cm,

在Rt△OCN中,OC=NC×tan30°=5× = cm.

②如图3,当P在∠AOB外部,连接PF,PC,PC交EF于点N,过点P作PM⊥EF于点M,

由①可知,PN=2cm,

∴NC=PC﹣PN=1cm,

在Rt△OCN中,OC=NC×tan30°=1× = cm.

综上所述,OC的长为 cm或 cm.


【解析】(1)根据∠AOB=60°,半径为3cm的⊙P沿边OA从右向左平行移动,与边OA相切的切点记为点C,利用弧长公式得出弧 的长;(2)分两种情况分析,①当P在∠AOB内部,根据⊙P移动到与边OB相交于点E,F,利用垂径定理得出EF=4 cm,得出EM=2 cm,进而得出OC的长. ②当P在∠AOB外部,连接PF,PC,PC交EF于点N,过点P作PM⊥EF于点M,进而求出即可.
【考点精析】掌握含30度角的直角三角形和勾股定理的概念是解答本题的根本,需要知道在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半;直角三角形两直角边a、b的平方和等于斜边c的平方,即;a2+b2=c2

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网