题目内容

【题目】如图,在△ABC中,∠BAC90°,E为边BC上的点,且ADBED为线段BE的中点,过点EEFAE,过点AAFBC,且AFEF相交于点F

1)求证:∠EAD=∠BAD

2)求证:ACEF

【答案】1)证明见解析;(2)证明见解析.

【解析】

(1)由线段垂直平分线的性质可得AB=AE,再由三线合一可得结论;

2)由“ASA”可证ABC≌△EAF,可得AC=EF

证明:(1)∵AB=AED为线段BE的中点,ADBC

ADBE的垂直平分线,

∴∠EAD=∠BAD(三线合一);

2)∵AFBC
∴∠FAE=AEB
AB=AE
∴∠B=AEB
∴∠B=FAE,且∠AEF=BAC=90°AB=AE
∴△ABC≌△EAFASA
AC=EF

练习册系列答案
相关题目

【题目】阅读下列材料,完成任务:

自相似图形

定义:若某个图形可分割为若干个都与它相似的图形,则称这个图形是自相似图形.例如:正方形ABCD中,点E、F、G、H分别是AB、BC、CD、DA边的中点,连接EG,HF交于点O,易知分割成的四个四边形AEOH、EBFO、OFCG、HOGD均为正方形,且与原正方形相似,故正方形是自相似图形.

任务:

(1)图1中正方形ABCD分割成的四个小正方形中,每个正方形与原正方形的相似比为   

(2)如图2,已知ABC中,ACB=90°,AC=4,BC=3,小明发现ABC也是“自相似图形”,他的思路是:过点C作CDAB于点D,则CD将ABC分割成2个与它自己相似的小直角三角形.已知△ACD∽△ABC,则ACD与ABC的相似比为   

(3)现有一个矩形ABCD是自相似图形,其中长AD=a,宽AB=b(a>b).

请从下列A、B两题中任选一条作答:我选择   题.

A:①如图3﹣1,若将矩形ABCD纵向分割成两个全等矩形,且与原矩形都相似,则a=   (用含b的式子表示);

如图3﹣2若将矩形ABCD纵向分割成n个全等矩形,且与原矩形都相似,则a=   (用含n,b的式子表示);

B:①如图4﹣1,若将矩形ABCD先纵向分割出2个全等矩形,再将剩余的部分横向分割成3个全等矩形,且分割得到的矩形与原矩形都相似,则a=   (用含b的式子表示);

如图4﹣2,若将矩形ABCD先纵向分割出m个全等矩形,再将剩余的部分横向分割成n个全等矩形,且分割得到的矩形与原矩形都相似,则a=   (用含m,n,b的式子表示).

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网