题目内容
【题目】记,则的最小值为__________.
【答案】90
【解析】
根据题意可知=|x-1|+|x-2|+|x-3|+…+|x-19|,由绝对值的意义以及数轴上两点间的距离可知|x-a|表示x到a的距离,只有当x到1的距离等于x到19的距离时,式子取得最小值.据此进行求解即可得.
∵,
∴=|x-1|+|x-2|+|x-3|+…+|x-19|,
由绝对值的意义以及数轴上两点间的距离可知|x-a|表示x到a的距离,只有当x到1的距离等于x到19的距离时,式子取得最小值.
∴当x==10时,式子取得最小值,
此时,=|x-1|+|x-2|+|x-3|+…+|x-19|
=|10-1|+|10-2|+|10-3|+…+|10-9|+|10-10|+|10-11|+…+|10-18|+|10-19|
=9+8+7+…+1+0+1+2+…+8+9
=2×(1+2+3+…+9)
=2×45
=90,
故答案为:90.
练习册系列答案
相关题目
【题目】为鼓励居民节约用电,某市采用价格调控手段达到省电目的.该市电费收费标准如下表(按月结算) :
每月用电量/度 | 电价/(元/度) |
不超过度的部分 | 元/度 |
超过度且不超过度的部分 | 元/度 |
超过度的部分 | 元/度 |
解答下列问题:
(1)某居民月份用电量为度,请问该居民月应缴电费多少元?
(2)设某月的用电量为度,试写出不同用电量范围应缴的电费(用表示) .
(3)某居民月份缴电费元,求该居民月份的用电量.