题目内容
【题目】如图,在△ABC中,AD是高,AE是角平分线.
(1)若∠B=30°,∠C=70°,则∠CAE=______°,∠DAE=______°.
(2>若∠B=40°,∠C=80°.则∠DAE=______°.
(3)通过探究,小明发现将(2)中的条件“∠B=40°,∠C=80°”改为“∠C-∠B=40°”,也求出了∠DAE的度数,请你写出小明的求解过程.
【答案】(1)40,20;(2) 20;(3)详见解析
【解析】
(1)根据三角形的高求出∠ADC=90°,再根据三角形内角和定理求出求出∠BAC和∠DAC,根据角平分线定义求出∠CAE,即可求出答案;
(2)根据三角形的高求出∠ADC=90°,再根据三角形内角和定理求出求出∠BAC和∠DAC,根据角平分线定义求出∠CAE,即可求出答案;
(3)根据三角形的高求出∠ADC=90°,再根据三角形内角和定理求出求出∠BAC和∠DAC,根据角平分线定义求出∠CAE,最后代入求出即可.
解:(1)∵∠B=30°,∠C=70°,
∴∠BAC=180°-(∠B+∠C)=80°,
∵AE是角平分线,
∴∠CAE= =40°,
∵AD是高,
∴∠ADC=90°,
∵∠C=70°,
∴∠DAC=180°-∠ADC-∠C=20°,
∴∠DAE=∠CAE-∠CAD=40°-20°=20°,
故答案为:40,20;
(2)∵∠B=40°,∠C=80°,
∴∠BAC=180°-(∠B+∠C)=60°,
∵AE是角平分线,
∴∠CAE==30°,
∵AD是高,
∴∠ADC=90°,
∵∠C=80°,
∴∠DAC=180°-∠ADC-∠C=10°,
∴∠DAE=∠CAE-∠CAD=30°-10°=20°,
故答案为:20;
(3)∵∠BAC +∠B+∠C=180°,
∴∠BAC=180°-(∠B+∠C),
∵AE是角平分线,
∴∠CAE=
∵AD是高,
∴∠ADC=90°,
∴∠DAC=180°-∠ADC-∠C=90°-∠C,
∴∠DAE=∠CAE-∠CAD
=20°.