题目内容
【题目】某地A、B两村盛产柑橘,A村有柑橘200吨,B村有柑橘300吨,现将这些柑橘运到C、D两个冷藏仓库.已知C仓库可储存240吨,D仓库可储存260吨,从A村运往C、D两处的费用分别为每吨20元、25元,从B村运往C、D两处的费用分别为每吨15元、18元.设从A村运往C仓库的柑橘重量为x吨,A、B两村运往两仓库的柑橘运输费用分别为yA元、yB元.
(1)请填写下表,并求出yA、yB与x之间的函数表达式;
(2)试讨论A、B两村中,哪个村的运费较少;
(3)考虑到B村的经济承受能力,B村的柑橘运费不得超过4830元,在这种情况下,请问怎样调运才能使两村运费之和最小?求出这个最小值.
【答案】(1)(200-x)吨,(240-x)吨,(x+60)吨;yA=5000-5x(0≤x≤200),yB=3x+4680(0≤x≤200);(2)当x=40时,两村的运费一样多;以当0≤x<40时,B村的运费较少;当40<x≤200时,A村的运费较少;
(3)调运方案为A村运往C仓库50吨柑橘,运往D仓库150吨柑橘,B村运往C仓库190吨柑橘,运往D仓库110吨柑橘,两村的费用之和最小,最小值为9580元.
【解析】(1)由A村共有柑橘200吨,从A村运往C仓库x吨,剩下的运往D仓库,故运往D仓库为(200﹣x)吨,由A村已经运往C仓库x吨,C仓库可储存240吨,故B村应往C仓库运(240﹣x)吨,剩下的运往D仓库,剩下的为300﹣(240﹣x),化简后即可得到B村运往D仓库的吨数,填表即可;
(2)由从A村运往C,D两处的费用分别为每吨20元和25元;从B村运往C,D两处的费用分别为每吨15元和18元,由表格中的代数式求得总费用即可;
(3)由B村的柑橘运费不得超过4830元,得到不等式,求出x的取值范围.再求出两村运费之和w,由一次函数的性质即可得出结论.
(1)从左往右,从上往下依次填:(200-x)吨,(240-x)吨,(x+60)吨.
yA=20x+25(200-x)=5000-5x(0≤x≤200),
yB=15(240-x)+18(x+60)=3x+4680(0≤x≤200).
(2)当yA=yB,即5000-5x=3x+4680时,
解得:x=40,所以当x=40时,两村的运费一样多;
当yA>yB,即5000-5x>3x+4680时,
解得:x<40,所以当0≤x<40时,B村的运费较少;
当yA<yB,即5000-5x<3x+4680时,解得:x>40,
所以当40<x≤200时,A村的运费较少.
(3)由B村的柑橘运费不得超过4830元,得3x+4680≤4830,
解得:x≤50.
两村运费之和w=yA+yB=5000-5x+3x+4680=9680-2x.
∵-2<0,
∴w随x的增大而减小,
∴当x=50时,两村的运费之和最小,
∴调运方案为A村运往C仓库50吨柑橘,运往D仓库150吨柑橘,B村运往C仓库190吨柑橘,运往D仓库110吨柑橘,两村的费用之和最小,最小值为9680-2×50=9580(元).