题目内容
【题目】如图,已知△ABC中,AD⊥BC于点D,E为AB边上任意一点,EF⊥BC于点F,∠1=∠2.求证:DG∥AB.请把证明的过程填写完整.
证明:∵AD⊥BC,EF⊥BC( ),
∴∠EFB=∠ADB=90°(垂直的定义)
∴EF∥ ( )
∴∠1= ( )
又∵∠1=∠2(已知)
∴ ( )
∴DG∥AB( )
【答案】见解析
【解析】
根据三角形内角和定理以及平行线的性质即可求出答案.
证明:∵AD⊥BC,EF⊥BC( 已知),
∴∠EFB=∠ADB=90°(垂直的定义)
∴EF∥AD( 同位角相等,两直线平行)
∴∠1=∠3( 两直线平行,同位角相等)
又∵∠1=∠2(已知)
∴∠2=∠3(等量代换)
∴DG∥AB(内错角相等,两直线平行)
故答案为:已知;AD;同位角相等,两直线平行;∠3;两直线平行,同位角相等;∠2=∠3;等量代换;内错角相等,两直线平行;
练习册系列答案
相关题目