题目内容
【题目】如图,∠MON=90°,长方形ABCD的顶点B、C分别在边OM、ON上,当B在边OM上运动时,C随之在边ON上运动,若CD=5,BC=24,运动过程中,点D到点O的最大距离为( )
A. 24B. 25C. 3+12D. 26
【答案】B
【解析】
取BC的中点E,连接OE、DE、OD,根据三角形的任意两边之和大于第三边可知当O、D、E三点共线时,点D到点O的距离最大,再根据勾股定理列式求出DE的长,根据直角三角形斜边上的中线等于斜边的一半求出OE的长,两者相加即可得解
如图,取BC的中点E,连接OE、DE、OD,
∵OD≤OE+DE,
∴当O、D、E三点共线时,点D到点O的距离最大,
此时,∵CD=5,BC=24,
∴OE=EC=BC=12,
DE=,
∴OD的最大值为:12+13=25.
故选:B.
练习册系列答案
相关题目