题目内容

【题目】在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E.
(1)当直线MN绕点C旋转到图1的位置时, 求证:①△ADC≌△CEB;②DE=AD+BE;
(2)当直线MN绕点C旋转到图2的位置时,(1)中的结论还成立吗?若成立,请给出证明;若不成立,说明理由.

【答案】
(1)证明:①∵∠ACD+∠BCE=90°∠DAC+∠ACD=90°,

∴∠DAC=∠BCE.

又AC=BC,∠ADC=∠BEC=90°,

∴△ADC≌△CEB.

②∵△ADC≌△CEB,

∴CD=BE,AD=CE.

∴DE=CE+CD=AD+BE


(2)△ADC≌△CEB成立,DE=AD+BE.不成立,此时应有DE=AD﹣BE.

证明:∵∠ACD+∠BCE=90°∠DAC+∠ACD=90°,

∴∠DAC=∠BCE.

又AC=BC,∠ADC=∠BEC=90°,

∴△ADC≌△CEB.

∴CD=BE,AD=CE.

∴DE=AD﹣BE


【解析】(1)直角三角形中斜边对应相等,即可证明全等,再由线段对应相等,得出②中结论;(2)由图可知,△ADC与△CEB仍全等,但线段的关系已发生改变.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网