题目内容
【题目】如图,在Rt△ABC中,∠ACB=90°,点D在AC上,DE⊥AB于点E,且CD=DE.点F在BC上,连接EF,AF,若∠CEF=45°,∠B=2∠CAF,BF=2,则AB的长为_____.
【答案】10
【解析】
以AC为轴将△ACF翻至△ACK,在AB边上截取BL=BF=2,设CF=x,则EL=CK=x,分别用含x的式子表示出Rt△ABC中的三边长,根据勾股定理列方程,解得x值,则可得答案.
解:如图,以AC为轴将△ACF翻至△ACK,在AB边上截取BL=BF=2
∵∠ACB=90°,DE⊥AB
∴∠BCE+∠DCE=90°,∠BEC+∠DEC=90°
∵CD=DE
∴∠DCE=∠DEC
∴∠BCE=∠BEC
∴BC=BE
∵BF=BL=2
∴EL=CF
设CF=x,则EL=CK=x
∴BK=2x+2,BC=BE=x+2
设∠B=2∠CAF=2α
则∠CAK=α,∠K=90°﹣α
∴∠KAB=180°﹣2α﹣(90°﹣α)=90°﹣α
∴∠K=∠KAB
∴BA=BK=2x+2
在△CBL和△EBF中
∴△CBL≌△EBF(SAS)
∴∠BCL=∠BEF
又∵∠CEF=45°,∠BCE=∠BEC
∴∠ECL=∠CEF=45°
∴∠ALC=180°﹣45°﹣45°﹣∠BEF=90°﹣∠BEF
∵∠ACL=90°﹣∠BCL,∠BCL=∠BEF
∴∠ALC=∠ACL
∴AC=AL=2x
在Rt△ABC中,由勾股定理得:
(x+2)2+(2x)2=(2x+2)2
解得x=4或x=0(舍)
∴AB=10
故答案为:10.
练习册系列答案
相关题目