题目内容
(2011•重庆)如图,在平面直角坐标系x0y中,一次函数y=kx+b(k≠0)的图象与反比例函数(m≠0)的图象交于二、四象限内的A、B两点,与x轴交于C点,点B的坐标为(6,n).线段OA=5,E为x轴上一点,且sin∠AOE=.
(1)求该反比例函数和一次函数的解析式;
(2)求△AOC的面积.
(1)求该反比例函数和一次函数的解析式;
(2)求△AOC的面积.
解:(1)过点A作AD⊥x轴于D点,如图
∵sin∠AOE=,OA=5,
∴sin∠AOE===,
∴AD=4,
∴DO==3,
而点A在第二象限,
∴点A的坐标为(﹣3,4),
将A(﹣3,4)代入y=,得m=﹣12,
∴反比例函数的解析式为y=﹣;
将B(6,n)代入y=﹣,得n=﹣2;
将A(﹣3,4)和B(6,﹣2)分别代入y=kx+b(k≠0),得
,
解得,
∴所求的一次函数的解析式为y=﹣x+2;
(2)在y=﹣x+2中,令y=0,
即﹣x+2=0,
解得x=3,
∴C点坐标为(0,3),即OC=3,
∴S△AOC=•AD•OC=•4•3=6.
∵sin∠AOE=,OA=5,
∴sin∠AOE===,
∴AD=4,
∴DO==3,
而点A在第二象限,
∴点A的坐标为(﹣3,4),
将A(﹣3,4)代入y=,得m=﹣12,
∴反比例函数的解析式为y=﹣;
将B(6,n)代入y=﹣,得n=﹣2;
将A(﹣3,4)和B(6,﹣2)分别代入y=kx+b(k≠0),得
,
解得,
∴所求的一次函数的解析式为y=﹣x+2;
(2)在y=﹣x+2中,令y=0,
即﹣x+2=0,
解得x=3,
∴C点坐标为(0,3),即OC=3,
∴S△AOC=•AD•OC=•4•3=6.
略
练习册系列答案
相关题目