题目内容
【题目】如图①,已知等腰直角中,BD为斜边上的中线,E为DC上的一点,且于G,AG交BD于F.
(1)求证:AF=BE.
(2)如图②,当点E在DC的延长线上,其它条件不变,①的结论还能成立吗?若不能,请说明理由;若能,请予以证明。
【答案】(1)证明见解析;(2)证明见解析.
【解析】
(1)首先证明AD=BD,再证明∠DAF=∠DBE,可利用ASA定理判定△AFD≌△BED,进而得到AF=BE;
(2)方法与(1)类似,利用AAS证明△AFD≌△BED,可得AF=BE.
(1)∵△ABC是等腰三角形,BD为斜边上的中线,
∴BD=ADAC,∠ADB=90°,
∴∠1+∠GAD=90°.
∵AG⊥BE于G,
∴∠2+∠DBE=90°.
∵∠1=∠2,
∴∠DAF=∠DBE.
在△AFD和△BED中,
∵,
∴△AFD≌△BED(ASA),
∴AF=BE;
(2)①的结论还能成立.证明如下:
∵△ABC是等腰三角形,BD为斜边上的中线,
∴BD=ADAC,∠ADB=90°,
∴∠DBE+∠DEB=90°.
∵AG⊥BE于G,
∴∠GBF+∠F=90°.
∵∠DBE=∠GBF,
∴∠F=∠DEB.
在△AFD和△BED中,
∵,
∴△AFD≌△BED(AAS),
∴AF=BE;
练习册系列答案
相关题目