题目内容
(本题6分)已知:如图,△ABC是等边三角形,D是AB边上的点,将DB绕点D顺时针旋转60°得到线段DE,延长ED交AC于点F,连结DC、AE.![](http://thumb.zyjl.cn/pic1/imagenew2/czsx/12/92192.png)
【小题1】(1)求证:△ADE≌△DFC;
【小题2】(2)过点E作EH∥DC交DB于点G,交BC于点H,连结AH.求∠AHE的度数;
【小题3】(3)若BG=
![](http://thumb.zyjl.cn/pic1/imagenew2/czsx/13/92193.png)
【小题1】(1)证明:如图,
∵线段DB顺时针旋转60°得线段DE,
∴∠EDB =60°,DE=DB.
∵△ABC是等边三角形,
∴∠B=∠ACB =60°.
∴∠EDB =∠B.
∴EF∥BC.····································· 1分
∴DB=FC,∠ADF=∠AFD =60°.
∴DE=DB=FC,∠ADE=∠DFC =120°,△ADF是等边三角形.
∴AD=DF.
∴△ADE≌△DFC.
【小题2】(2)由△ADE≌△DFC,
得AE=DC,∠1=∠2.
∵ED∥BC, EH∥DC,
∴四边形EHCD是平行四边形.
∴EH=DC,∠3=∠4.
∴AE=EH. ················································································· 3分
∴∠AEH=∠1+∠3=∠2+∠4 =∠ACB=60°.
∴△AEH是等边三角形.
∴∠AHE=60°.
【小题3】(3)设BH=x,则AC= BC =BH+HC= x+2,
由(2)四边形EHCD是平行四边形,
∴ED=HC.
∴DE=DB=HC=FC=2.
∵EH∥DC,
∴△BGH∽△BDC.······································································· 5分
∴
![](http://thumb.zyjl.cn/pic1/imagenew2/czsx/14/92194.png)
![](http://thumb.zyjl.cn/pic1/imagenew2/czsx/15/92195.png)
解得
![](http://thumb.zyjl.cn/pic1/imagenew2/czsx/16/92196.png)
∴BC=3.解析:
略
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目