题目内容
(本题6分)已知:如图,△ABC是等边三角形,D是AB边上的点,将DB绕点D顺时针旋转60°得到线段DE,延长ED交AC于点F,连结DC、AE.
1.(1)求证:△ADE≌△DFC;
2.(2)过点E作EH∥DC交DB于点G,交BC于点H,连结AH.求∠AHE的度数;
3.(3)若BG=,CH=2,求BC的长.
1.(1)证明:如图,
∵ 线段DB顺时针旋转60°得线段DE,
∴ ∠EDB =60°,DE=DB.
∵ △ABC是等边三角形,
∴ ∠B=∠ACB =60°.
∴ ∠EDB =∠B .
∴ EF∥BC.················································ 1分
∴ DB=FC,∠ADF=∠AFD =60°.
∴ DE=DB=FC,∠ADE=∠DFC =120°,△ADF是等边三角形.
∴ AD=DF.
∴ △ADE≌△DFC.
2.(2)由 △ADE≌△DFC,
得 AE=DC,∠1=∠2.
∵ ED∥BC, EH∥DC,
∴ 四边形EHCD是平行四边形.
∴ EH=DC,∠3=∠4.
∴ AE=EH. ······································································································· 3分
∴ ∠AEH=∠1+∠3=∠2+∠4 =∠ACB=60°.
∴ △AEH是等边三角形.
∴∠AHE=60°.
3.(3)设BH=x,则AC= BC =BH+HC= x+2,
由(2)四边形EHCD是平行四边形,
∴ ED=HC.
∴ DE=DB=HC=FC=2.
∵ EH∥DC,
∴ △BGH∽△BDC.··························································································· 5分
∴ .即 .
解得 .
∴ BC=3.
【解析】略