题目内容

(本题6分)已知:如图,△ABC是等边三角形,DAB边上的点,将DB绕点D顺时针旋转60°得到线段DE,延长EDAC于点F,连结DCAE

1.(1)求证:△ADE≌△DFC

2.(2)过点EEHDCDB于点G,交BC于点H,连结AH.求∠AHE的度数;

3.(3)若BG=CH=2,求BC的长.

 

【答案】

 

1.(1)证明:如图,

∵ 线段DB顺时针旋转60°得线段DE

∴ ∠EDB =60°,DE=DB.

∵ △ABC是等边三角形,

∴ ∠B=∠ACB =60°.

∴ ∠EDB =∠B .

EFBC.················································ 1分

DB=FC,∠ADF=∠AFD =60°.

DE=DB=FC,∠ADE=∠DFC =120°,△ADF是等边三角形.

AD=DF.

∴ △ADE≌△DFC.

2.(2)由 △ADE≌△DFC

AE=DC,∠1=∠2.

EDBC EHDC

∴ 四边形EHCD是平行四边形.

EH=DC,∠3=∠4.

AE=EH. ······································································································· 3分

∴ ∠AEH=∠1+∠3=∠2+∠4 =ACB=60°.

∴ △AEH是等边三角形.

∴∠AHE=60°.

3.(3)设BH=x,则AC= BC =BHHC= x+2,

由(2)四边形EHCD是平行四边形,

ED=HC.

DE=DB=HC=FC=2.

EHDC

∴ △BGH∽△BDC.··························································································· 5分

.即 .

解得 .

BC=3.

【解析】略

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网