题目内容
【题目】如图1,已知△ABC是等腰直角三角形,∠BAC=90°,点D是BC的中点.作正方形DEFG,使点A、C分别在DG和DE上,连接AE,BG.
(1)试猜想线段BG和AE的数量关系是 ;
(2)将正方形DEFG绕点D逆时针方向旋转α(0°<α≤360°),
①判断(1)中的结论是否仍然成立?请利用图2证明你的结论;
②若BC=DE=4,当AE取最大值时,求AF的值.
【答案】(1)BG=AE;(2)①见解析;②AF=2.
【解析】
试题分析:(1)由等腰直角三角形的性质及正方形的性质就可以得出△ADE≌△BDG就可以得出结论;
(2)①如图2,连接AD,由等腰直角三角形的性质及正方形的性质就可以得出△ADE≌△BDG就可以得出结论;
②由①可知BG=AE,当BG取得最大值时,AE取得最大值,由勾股定理就可以得出结论.
解:(1)BG=AE.
理由:如图1,∵△ABC是等腰直角三角形,∠BAC=90°,点D是BC的中点,
∴AD⊥BC,BD=CD,
∴∠ADB=∠ADC=90°.
∵四边形DEFG是正方形,
∴DE=DG.
在△BDG和△ADE中,
,
∴△ADE≌△BDG(SAS),
∴BG=AE.
故答案为:BG=AE;
(2)①成立BG=AE.
理由:如图2,连接AD,
∵在Rt△BAC中,D为斜边BC中点,
∴AD=BD,AD⊥BC,
∴∠ADG+∠GDB=90°.
∵四边形EFGD为正方形,
∴DE=DG,且∠GDE=90°,
∴∠ADG+∠ADE=90°,
∴∠BDG=∠ADE.
在△BDG和△ADE中,
,
∴△BDG≌△ADE(SAS),
∴BG=AE;
②∵BG=AE,
∴当BG取得最大值时,AE取得最大值.
如图3,当旋转角为270°时,BG=AE.
∵BC=DE=4,
∴BG=2+4=6.
∴AE=6.
在Rt△AEF中,由勾股定理,得
AF==,
∴AF=2.