题目内容
【题目】已知直线y=mx+n(m≠0,且m,n为常数)与双曲线y=(k<0)在第一象限交于A,B两点,C,D是该双曲线另一支上两点,且A、B、C、D四点按顺时针顺序排列.
(1)如图,若m=﹣,n=,点B的纵坐标为,
①求k的值;
②作线段CD,使CD∥AB且CD=AB,并简述作法;
(2)若四边形ABCD为矩形,A的坐标为(1,5),
①求m,n的值;
②点P(a,b)是双曲线y=第一象限上一动点,当S△APC≥24时,则a的取值范围是 .
【答案】(1)①k= 5;②见解析,由此AO交双曲线于点C,延长BO交双曲线于点D,线段CD即为所求;(2)①;②0<a<1或a>5
【解析】
(1)①求出直线的解析式,利用待定系数法即可解决问题;②如图,由此AO交双曲线于点C,延长BO交双曲线于点D,线段CD即为所求;
(2)①求出A,B两点坐标,利用待定系数法即可解决问题;②分两种情形求出△PAC的面积=24时a的值,即可判断.
(1)①∵,,
∴直线的解析式为,
∵点B在直线上,纵坐标为,
∴,
解得x=2
∴,
∴;
②如下图,由此AO交双曲线于点C,延长BO交双曲线于点D,线段CD即为所求;
(2)①∵点在上,
∴k=5,
∵四边形ABCD是矩形,
∴OA=OB=OC=OD,
∴A,B关于直线y=x对称,
∴,
则有:,解得;
②如下图,当点P在点A的右侧时,作点C关于y轴的对称点C′,连接AC,AC′,PC,PC′,PA.
∵A,C关于原点对称,,
∴,
∵,
当时,
∴,
∴,
∴a=5或(舍弃),
当点P在点A的左侧时,同法可得a=1,
∴满足条件的a的范围为或.
练习册系列答案
相关题目