题目内容
【题目】如图,在△ABC中,∠ACB=45°,过点A作AD⊥BC于点D,点E为AD上一点,且ED=BD.
(1)求证:△ABD≌△CED;
(2)若CE为∠ACD的角平分线,求∠BAC的度数.
【答案】(1)见解析;(2)∠BAC=67.5°.
【解析】
(1)证出△ADC是等腰直角三角形,得出AD=CD,∠CAD=∠ACD=45°,由SAS证明△ABD≌△CED即可;
(2)由角平分线定义得出∠ECD=∠ACD=22.5°,由全等三角形的性质得出∠BAD=∠ECD=22.5°,即可得出答案.
解:(1)证明:∵AD⊥BC,∠ACB=45°,
∴∠ADB=∠CDE=90°,△ADC是等腰直角三角形,
∴AD=CD,∠CAD=∠ACD=45°,
在△ABD与△CED中,,
∴△ABD≌△CED(SAS);
(2)解:∵CE为∠ACD的角平分线,
∴∠ECD=∠ACD=22.5°,
由(1)得:△ABD≌△CED,
∴∠BAD=∠ECD=22.5°,
∴∠BAC=∠BAD+∠CAD=22.5°+45°=67.5°.
练习册系列答案
相关题目