题目内容

【题目】如图,DE⊥AB于E,DF⊥AC于F,若BD=CD、BE=CF,

(1)求证:AD平分∠BAC;(2)已知AC=20, BE=4,求AB的长.

【答案】(1)详见解析;(2)12

【解析】

如图,DE⊥AB于E,DF⊥AC于F,若BD=CD、BE=CF,

(1)求证:AD平分∠BAC;(2)已知AC=20, BE=4,求AB的长.

(1)证明:∵DE⊥AB,DF⊥AC,

∴∠E=∠DFC=90°,

∴在Rt△BED和Rt△CFD中

∴Rt△BED≌Rt△CFD(HL),

∴DE=DF,

∵DE⊥AB,DF⊥AC,

∴AD平分∠BAC;

(2)解:∵Rt△BED≌Rt△CFD,

∴AE=AF,CF=BE=4,

∵AC=20,

∴AE=AF=20﹣4=16,

∴AB=AE﹣BE=16﹣4=12.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网