题目内容

【题目】(定义[a,b,c]为函数的特征数,下面给出特征数为 [2m,1-m,-1-m]的函数的一些结论:

当m=-3时,函数图象的顶点坐标是(,;

当m>0时,函数图象截x轴所得的线段长度大于;

当m<0时,函数在,y随x的增大而减小;

当m≠0时,函数图象经过x轴上一个定点.

其中正确的结论有________ .(只需填写序号)

【答案】①②④

【解析】

试题因为函数y=ax2+bx+c的特征数为[2m,1﹣m,﹣1﹣m];

当m=﹣3时,y=﹣6x2+4x+2=﹣6(x﹣2+,顶点坐标是(,;此结论正确;

当m>0时,令y=0,有2mx2+(1﹣m)x+(﹣1﹣m)=0,解得x=,x1=1,x2=,

|x2﹣x1|=,所以当m>0时,函数图象截x轴所得的线段长度大于,此结论正确;

当m<0时,y=2mx2+(1﹣m)x+(﹣1﹣m) 是一个开口向下的抛物线,其对称轴是:,在对称轴的右边y随x的增大而减小.因为当m<0时,=,即对称轴在x=右边,因此函数在x=右边先递增到对称轴位置,再递减,此结论错误;

当x=1时,y=2mx2+(1﹣m)x+(﹣1﹣m)=2m+(1﹣m)+(﹣1﹣m)=0 即对任意m,函数图象都经过点(1,0)那么同样的:当m=0时,函数图象都经过同一个点(1,0),当m≠0时,函数图象经过同一个点(1,0),故当m≠0时,函数图象经过x轴上一个定点此结论正确.

根据上面的分析,①②④都是正确的,是错误的

故答案是①②④

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网