题目内容
【题目】如图,在△ABC中,∠B=30°,BC的垂直平分线交AB于点E,垂足为D,CE平分∠ACB.若BE=2,则AE的长为( )
A.
B.1
C.
D.2
【答案】B
【解析】解:∵在△ABC中,∠B=30°,BC的垂直平分线交AB于E,BE=2,
∴BE=CE=2,
∴∠B=∠DCE=30°,
∵CE平分∠ACB,
∴∠ACB=2∠DCE=60°,∠ACE=∠DCE=30°,
∴∠A=180°﹣∠B﹣∠ACB=90°.
在Rt△CAE中,∵∠A=90°,∠ACE=30°,CE=2,
∴AE=CE=1.
故选B.
先根据线段垂直平分线的性质得出BE=CE=2,故可得出∠B=∠DCE=30°,再由角平分线定义得出 ∠ACB=2∠DCE=60°,∠ACE=∠DCE=30°,利用三角形内角和定理求出∠A=180°﹣∠B﹣∠ACB=90°,然后在Rt△CAE中根 据30°角所对的直角边等于斜边的一半得出AE=CE=1.
练习册系列答案
相关题目
【题目】为配合全市“禁止焚烧秸秆”工作,某学校举行了“禁止焚烧秸秆,保护环境,从我做起”为主题的演讲比赛,赛后组委会整理参赛同学的成绩,并制作了如图不完整的频数分布表和频数分布直方图
分数段(分手为x分) | 频数 | 百分比 |
60≤x<70 | 8 | 20% |
70≤x<80 | a | 30% |
80≤x≤90 | 16 | b% |
90≤x<100 | 4 | 10% |
请根据图表提供的信息,解答下列问题:
(1)表中的a= , b=;请补全频数分布直方图;
(2)若用扇形统计图来描述成绩分布情况,则分数段70≤x<80对应扇形的圆心角的度数是 .
(3)竞赛成绩不低于90分的4名同学中正好有2名男同学,2名女同学.学校从这4名同学中随机抽2名同学接受电视台记者采访,则正好抽到一名男同学和一名女同学的概率为 .