题目内容
【题目】阅读下列材料,并解决后面的问题。
材料:我们知道,n个相同的因数a相乘可记为an,如23=8,此时,3叫做以2为底8的对数,记为log28(即log28=3)
一般地,若an=b (a>0且a≠1,b>0),则n叫做以a为底b的对数,记为logab(即logab=n).如34=81,则4叫做以3为底81的对数,记为log381(即log381=4)
(1)计算以下各对数的值:log24= ,log216= ,log264= .
(2)观察(1)中三数4、16、64之间满足怎样的关系式?log24、log216、log264之间又满足怎样的关系式?
(3)根据(2)的结果,我们可以归纳出:logaM+logaN=logaM N (a>0且a≠1,M>0,N>0),请你根据幂的运算法则:am=an+m以及对数的定义证明该结论。
【答案】6;log264;loga(MN);证明见解析.
【解析】试题分析:首先认真阅读题目,准确理解对数的定义,把握好对数与指数的关系.
(1)根据对数的定义求解;
(2)认真观察,不难找到规律:4×16=64,log24+log216=log264;
(3)有特殊到一般,得出结论:logaM+logaN=loga(MN);
(4)首先可设logaM=b1,logaN=b2,再根据幂的运算法则:anam=an+m以及对数的含义证明结论.
试题解析:(1)log24=2,log216=4,log264=6;
(2)4×16=64,log24+log216=log264;
(3)logaM+logaN=loga(MN);
(4)证明:设logaM=b1,logaN=b2,
则ab1=M,ab2=N,
∴MN=ab1ab2=ab1+b2,
∴b1+b2=loga(MN)即logaM+logaN=loga(MN).