题目内容

【题目】如图,在四边形ABCD中,AD∥BC,∠C=90°,E为CD上一点,分别以EA,EB为折痕将两个角(∠D,∠C)向内折叠,点C,D恰好落在AB边的点F处.若AD=2,BC=3,则EF的长为

【答案】
【解析】解∵分别以AE,BE为折痕将两个角(∠D,∠C)向内折叠,点C,D恰好落在AB边的点F处, ∴DE=EF,CE=EF,AF=AD=2,BF=CB=3,
∴DC=2EF,AB=5,
作AH⊥BC于H,

∵AD∥BC,∠C=90°,
∴四边形ADCH为矩形,
∴AH=DC=2EF,HB=BC﹣CH=BC﹣AD=1,
在Rt△ABH中,AH= =2
∴EF=
故答案为:
先根据折叠的性质得DE=EF,CE=EF,AF=AD=2,BF=CB=3,则DC=2EF,AB=5,再作AH⊥BC于H,由于AD∥BC,∠B=90°,则可判断四边形ADCH为矩形,所以AH=DC=2EF,HB=BC﹣CH=BC﹣AD=1,然后在Rt△ABH中,利用勾股定理计算出AH=2 ,所以EF=

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网