题目内容

【题目】如图,已知A、B⊙O上两点,△OAB外角的平分线交⊙O于另一点C,CD⊥ABAB的延长线于D.

(1)求证:CD⊙O的切线;

(2)E的中点,F⊙O上一点,EFABG,若tan∠AFE=,BE=BG,EG=3,求⊙O的半径.

【答案】(1)详见解析;(2).

【解析】

(1)连接OC,先证明∠OCB=∠CBD得到OC∥AD,再利用CD⊥AB得到OC⊥CD,然后根据切线的判定定理得到结论;

(2)解:连接OEABH,如图,利用垂径定理得到OE⊥AB,再利用圆周角定理得到∠ABE=∠AFE,在Rt△BEH中利用正切可设EH=3x,BH=4x,则BE=5x,所以BG=BE=5x,GH=x,接着在Rt△EHG中利用勾股定理得到x2+(3x)2=(32,解方程得x=3,接下来设⊙O的半径为r,然后在Rt△OHB中利用勾股定理得到方程(r-9)2+122=r2,最后解关于r的方程即可.

(1)证明:连接OC,如图,

BC平分∠OBD,

∴∠OBD=CBD,

OB=OC,

∴∠OBC=OCB,

∴∠OCB=CBD,

OCAD,

CDAB,

OCCD,

CD是⊙O的切线;

(2)解:连接OEABH,如图,

E的中点,

OEAB,

∵∠ABE=AFE,

tanABE=tanAFE=

∴在RtBEH中,tanHBE=

EH=3x,BH=4x,

BE=5x,

BG=BE=5x,

GH=x,

RtEHG中,x2+(3x)2=(32,解得x=3,

EH=9,BH=12,

设⊙O的半径为r,则OH=r-9,

RtOHB中,(r-9)2+122=r2,解得r=

即⊙O的半径为

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网