题目内容
如图,将矩形纸片ABCD沿AE向上折叠,使点B落在DC边上的F点处.若△AFD的周长为9,△ECF的周长为3,则矩形ABCD的周长为 .
【答案】分析:折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.
解答:解:由折叠的性质知,AF=AB,EF=BE.所以矩形的周长等于△AFD和△CFE的周长的和为9+3=12.故矩形ABCD的周长为12.
点评:本题利用了折叠的性质.
解答:解:由折叠的性质知,AF=AB,EF=BE.所以矩形的周长等于△AFD和△CFE的周长的和为9+3=12.故矩形ABCD的周长为12.
点评:本题利用了折叠的性质.
练习册系列答案
相关题目