题目内容
【题目】 如图,点P是正方形ABCD的对角线BD上一点,PE⊥BC于点E,PF⊥CD于点F,连接EF给出下列五个结论:①AP=EF;②AP⊥EF;③△APD一定是等腰三角形;④∠PFE=∠BAP;⑤PD=EC.其中正确结论的番号是( )
A.①②④⑤B.①②③④⑤C.①②④D.①④
【答案】A
【解析】
过P作PG⊥AB于点G,根据正方形对角线的性质及题中的已知条件,证明△AGP≌△FPE后即可证明①AP=EF;④∠PFE=∠BAP;在此基础上,根据正方形的对角线平分对角的性质,在Rt△DPF中,DP2=DF2+PF2=EC2+EC2=2EC2,求得⑤DP=EC.
证明:过P作PG⊥AB于点G,
∵点P是正方形ABCD的对角线BD上一点,
∴GP=EP,
在△GPB中,∠GBP=45°,
∴∠GPB=45°,
∴GB=GP,
同理,得
PE=BE,
∵AB=BC=GF,
∴AG=AB-GB,FP=GF-GP=AB-GB,
∴AG=PF,
∴△AGP≌△FPE,
①∴AP=EF;
∠PFE=∠GAP
∴④∠PFE=∠BAP,
②延长AP到EF上于一点H,
∴∠PAG=∠PFH,
∵∠APG=∠FPH,
∴∠PHF=∠PGA=90°,即AP⊥EF;
③∵点P是正方形ABCD的对角线BD上任意一点,∠ADP=45度,
∴当∠PAD=45度或67.5度或90度时,△APD是等腰三角形,
除此之外,△APD不是等腰三角形,故③错误.
∵GF∥BC,
∴∠DPF=∠DBC,
又∵∠DPF=∠DBC=45°,
∴∠PDF=∠DPF=45°,
∴PF=EC,
∴在Rt△DPF中,DP2=DF2+PF2=EC2+EC2=2EC2,
∴⑤DP=EC.
∴其中正确结论的序号是①②④⑤.
故选:A.
【题目】一个金属棒在不同温度下,其长度也不同,其变化情况如下表:
温度/℃ | … | -5 | 0 | 5 | 10 | 15 | … |
长度/ | … | 13.9 | 13.95 | 14 | 14.05 | 14.1 | … |
(1)上述两个变量中,自变量是 ;
(2)设自变量为,因变量为,求出关于的解析式;
(3)当温度为30℃时,求金属棒的长度;
(4)若某天金属棒的长度是14.18,则当天的气温约是多少℃?