题目内容
【题目】如图,已知线段AB=2,MN⊥AB于点M,且AM=BM,P是射线MN上一动点,E,D分别是PA,PB的中点,过点A,M,D的圆与BP的另一交点C(点C在线段BD上),连结AC,DE.
(1)当∠APB=28°时,求∠B和 的度数;
(2)求证:AC=AB.
(3)在点P的运动过程中
①当MP=4时,取四边形ACDE一边的两端点和线段MP上一点Q,若以这三点为顶点的三角形是直角三角形,且Q为锐角顶点,求所有满足条件的MQ的值;
②记AP与圆的另一个交点为F,将点F绕点D旋转90°得到点G,当点G恰好落在MN上时,连结AG,CG,DG,EG,直接写出△ACG和△DEG的面积之比.
【答案】
(1)
解:∵MN⊥AB,AM=BM,
∴PA=PB,
∴∠PAB=∠B,
∵∠APB=28°,
∴∠B=76°,
如图1,连接MD,
∵MD为△PAB的中位线,
∴MD∥AP,
∴∠MDB=∠APB=28°,
∴ =2∠MDB=56°;
(2)
证明:∵∠BAC=∠MDC=∠APB,
又∵∠BAP=180°﹣∠APB﹣∠B,∠ACB=180°﹣∠BAC﹣∠B,
∴∠BAP=∠ACB,
∵∠BAP=∠B,
∴∠ACB=∠B,
∴AC=AB;
(3)
解:①如图2,记MP与圆的另一个交点为R,
∵MD是Rt△MBP的中线,
∴DM=DP,
∴∠DPM=∠DMP=∠RCD,
∴RC=RP,
∵∠ACR=∠AMR=90°,
∴AM2+MR2=AR2=AC2+CR2,
∴12+MR2=22+PR2,
∴12+(4﹣PR)2=22+PR2,
∴PR= ,
∴MR= ,
Ⅰ.当∠ACQ=90°时,AQ为圆的直径,
∴Q与R重合,
∴MQ=MR= ;
Ⅱ.如图3,当∠QCD=90°时,
在Rt△QCP中,PQ=2PR= ,
∴MQ= ;
Ⅲ.如图4,当∠QDC=90°时,
∵BM=1,MP=4,
∴BP= ,
∴DP= BP= ,
∵cos∠MPB= = ,
∴PQ= ,
∴MQ= ;
Ⅳ.如图5,当∠AEQ=90°时,
由对称性可得∠AEQ=∠BDQ=90°,
∴MQ= ;
综上所述,MQ的值为 或 或 ;
②△ACG和△DEG的面积之比为 .
理由:如图6,∵DM∥AF,
∴DF=AM=DE=1,
又由对称性可得GE=GD,
∴△DEG是等边三角形,
∴∠EDF=90°﹣60°=30°,
∴∠DEF=75°=∠MDE,
∴∠GDM=75°﹣60°=15°,
∴∠GMD=∠PGD﹣∠GDM=15°,
∴GMD=∠GDM,
∴GM=GD=1,
过C作CH⊥AB于H,
由∠BAC=30°可得CH= AC= AB=1=MG,AH= ,
∴CG=MH= ﹣1,
∴S△ACG= CG×CH= ,
∵S△DEG= ,
∴S△ACG:S△DEG= .
【解析】(1)根据三角形ABP是等腰三角形,可得∠B的度数,再连接MD,根据MD为△PAB的中位线,可得∠MDB=∠APB=28°,进而得到 =2∠MDB=56°;(2)根据∠BAP=∠ACB,∠BAP=∠B,即可得到∠ACB=∠B,进而得出AC=AB;(3)①记MP与圆的另一个交点为R,根据AM2+MR2=AR2=AC2+CR2 , 即可得到PR= ,MR= ,再根据Q为直角三角形锐角顶点,分四种情况进行讨论:当∠ACQ=90°时,当∠QCD=90°时,当∠QDC=90°时,当∠AEQ=90°时,即可求得MQ的值为 或 或 ;②先判定△DEG是等边三角形,再根据GMD=∠GDM,得到GM=GD=1,过C作CH⊥AB于H,由∠BAC=30°可得CH= AC=1=MG,即可得到CG=MH= ﹣1,进而得出S△ACG= CG×CH= ,再根据S△DEG= ,即可得到△ACG和△DEG的面积之比.
【题目】我国现行的二代身份证号码是18位数字,由前17位数字本体码和最后1位校验码组成.校验码通过前17位数字根据一定规则计算得出,如果校验码不符合这个规则,那么该号码肯定是假号码.现将前17位数字本体码记为,其中表示第位置上的身份证号码数字值,按下表中的规定分别给出每个位置上的一个对应的值.
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | |
7 | 9 | 10 | 5 | 8 | 4 | 2 | 1 | 6 | 3 | 7 | 9 | 10 | 5 | 8 | 4 | 2 | |
4 | 4 | 0 | 5 | 2 | 4 | 1 | 9 | 8 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 1 |
现以号码为例,先将该号码的前17位数字本体码填入表中(现已填好),依照以下操作步骤计算相应的校验码进行校验:
(1)对前17位数字本体码,按下列方式求和,并将和记为:
.
现经计算,已得出,继续求得____;
(2)计算,所得的余数记为,那么____;
(3)查阅下表得到对应的校验码(其中为罗马数字,用来代替10):
值 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
校验码 | 1 | 0 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 |
所得到的校验码为____,与号码中的最后一位进行对比,由此判断号码是____(填“真”或“假”)身份证号.