题目内容

【题目】已知:如图,四边形ABCD是菱形,E是BD延长线上一点,F是DB延长线上一点,且DE=BF.请你以F为一个端点,和图中已标明字母的某一点连成一条新的线段,猜想并证明它和图中已有的某一条线段相等(只须证明一组线段相等即可).

(1)连接 ;

(2)猜想: = ;

(3)证明:

【答案】(1)连结AF

(2)AF=AE

(3)证明:

四边形ABCD是菱形

AB=AD

∴∠ADB=ABD

∵∠ABD+ABF=180°

ADB+ADE=180°

∴∠ABF=ADE

BF = DE

∴△ABF≌△ADE(SAS)

AF=AE

【解析】

试题分析:根据观察图形,应该是连接AF或者CF

(1)连结AF(或连结CF)

(2)猜想AF=AE(连结CF的,则猜想CF=AE)

(3)证明:(以AF=AE为例,其他证法参照得分)

四边形ABCD是菱形

AB=AD

∴∠ADB=ABD

∵∠ABD+ABF=180°

ADB+ADE=180°

∴∠ABF=ADE

BF = DE

∴△ABF≌△ADE(SAS)

AF=AE

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网