题目内容
如图,AB为⊙O的直径,C、D是⊙O上的两点,∠BAC=20°,,则∠DAC的度数为
- A.70°
- B.45°
- C.35°
- D.25°
C
分析:由圆周角∠BAC的度数,根据同弧所对的圆心角等于圆周角的2倍,得到圆心角∠BOC的度数,再根据邻补角定义可得出∠AOC的度数,再由=,根据等弧对等角,可得∠COD=∠AOD=∠AOC,进而得到∠COD的度数,再由∠DAC与∠COD所对的弧都为,根据同弧所对的圆周角等于所对圆心角的一半,可求出∠DAC的度数.
解答:解:连接OC,OD,如图所示:
∵∠BAC与∠BOC所对的弧都为,∠BAC=20°,
∴∠BOC=2∠BAC=40°,
∴∠AOC=140°,
又=,
∴∠COD=∠AOD=∠AOC=70°,
∵∠DAC与∠DOC所对的弧都为,
∴∠DAC=∠COD=35°.
故选C
点评:此题考查了圆周角定理,以及弦,弧,圆心角三者的关系,要求学生根据题意,作出辅助线,建立未知角与已知角的联系,利用同弧(等弧)所对的圆心角等于所对圆周角的2倍来解决问题.
分析:由圆周角∠BAC的度数,根据同弧所对的圆心角等于圆周角的2倍,得到圆心角∠BOC的度数,再根据邻补角定义可得出∠AOC的度数,再由=,根据等弧对等角,可得∠COD=∠AOD=∠AOC,进而得到∠COD的度数,再由∠DAC与∠COD所对的弧都为,根据同弧所对的圆周角等于所对圆心角的一半,可求出∠DAC的度数.
解答:解:连接OC,OD,如图所示:
∵∠BAC与∠BOC所对的弧都为,∠BAC=20°,
∴∠BOC=2∠BAC=40°,
∴∠AOC=140°,
又=,
∴∠COD=∠AOD=∠AOC=70°,
∵∠DAC与∠DOC所对的弧都为,
∴∠DAC=∠COD=35°.
故选C
点评:此题考查了圆周角定理,以及弦,弧,圆心角三者的关系,要求学生根据题意,作出辅助线,建立未知角与已知角的联系,利用同弧(等弧)所对的圆心角等于所对圆周角的2倍来解决问题.
练习册系列答案
相关题目
如图,已知⊙O的直AB=20cm,CD垂AB于E,CD=12cm,AE的长为( )
A、1cm | B、2cm | C、3cm | D、4cm |