题目内容
【题目】如图,把矩形纸片OABC放入平面直角坐标系中,使OA、OC分别落在x轴,y轴上,连OB,将纸片OABC沿OB折叠,使点A落在A′的位置,若OB=,tan∠BOC=,则点A′的坐标( )
A. (,) B. (﹣,) C. (﹣,) D. (﹣,)
【答案】C
【解析】分析:即求A点关于OB的对称点的坐标.通过解方程组求解.
详解:∵tan∠BOC=,∴OC=2BC.
∵OC2+BC2=OB2=5,∴BC=1,OC=2.
所以A(1,0),B(1,2).
直线OB方程:y﹣2=2(x﹣1),A′和A关于OB对称,假设A′(x0,y0),AA'中点为M(x,y),则x=,y=.
∵M(x,y)在直线OB: y﹣2=2(x﹣1)上,∴﹣2=2(﹣1),即y0=2(x0+1).
∵x02+y02=OA'2=OA2=1,∴x02+4(x0+1)2=1,∴5x02+8x0+3=0.
解得:x0=﹣1或者x0=﹣,
当x0=﹣1时,y0=0,不合题意,舍去;
当x0=﹣时,y0=.
所以A(﹣).
故选C.
练习册系列答案
相关题目