题目内容
【题目】如图,在正方形ABCD中,AF=BE,AE与DF相交于点O.
(1)求证:△DAF≌△ABE;
(2)写出线段AE、DF的数量和位置关系,并说明理由.
【答案】(1)详见解析;(2)AE=DF,AE⊥D
【解析】
(1)根据正方形得性质很容易得到,DA=AB,∠DAF=∠ABE=90°,再根据AF=BE,即可证明△DAF≌△ABE.
(2)根据第一问得到的全等,可以很容易得到AE与DF的数量关系,而要根据图形可以猜测其位置关系为垂直,因此只需要证明到∠AOD=90°即可,因此可以转化到算∠ADO+∠DAO的度数.
(1)∵四边形ABCD是正方形,
∴DA=AB,∠DAF=∠ABE=90°,
∵AF=BE,
∴△DAF≌△ABE(SAS);
(2)AE=DF,AE⊥DF,理由如下:
由(1)得:△DAF≌△ABE,
∴DF=AE,∠ADF=∠BEA,
∵∠DAO+∠EAB=∠DAF=90°,
∴∠DAO+∠ADF=90°,
∴∠DAO=90°,
∴AE⊥DF.
练习册系列答案
相关题目
【题目】我市举行“第十七届中小学生书法大赛”作品比赛,已知每幅参赛作品成绩记为,组委会从1000幅书法作品中随机抽取了部分参赛作品,统计了它们的成绩,并绘制成如下统计图表.
分数段 | 频数 | 百分比 |
38 | 0.38 | |
________ | 0.32 | |
________ | ________ | |
10 | 0.1 | |
合计 | ________ | 1 |
根据上述信息,解答下列问题:
(1)这次书法作品比赛成绩的调查是采用_____(填“普查”或“抽样调查”),样本是_____.
(2)完成上表,并补全书法作品比赛成绩频数直方图.
(3)若80分(含80分)以上的书法作品将被评为等级奖,试估计全市获得等级奖的数量.