题目内容
【题目】如图,将一张矩形纸片ABCD沿着对角线BD向上折叠,顶点C落到点E处,BE交AD于点F.过点D作DG∥BE,交BC于点G,连接FG交BD于点O.若AB=6,AD=8,则DG的长为_____.
【答案】
【解析】
根据折叠的性质求出四边形BFDG是菱形,假设DF=BF=x,∴AF=AD﹣DF=8﹣x,根据在直角△ABF中,AB2+AF2=BF2,即可求解.
解:∵四边形ABCD是矩形,
∴AD∥BC,∴∠ADB=∠DBC
∴FD∥BG,
又∵DG∥BE,
∴四边形BFDG是平行四边形,
∵折叠,∴∠DBC=∠DBF,
故∠ADB =∠DBF
∴DF=BF,
∴四边形BFDG是菱形;
∵AB=6,AD=8,
∴BD=10.
∴OB=BD=5.
假设DF=BF=x,∴AF=AD﹣DF=8﹣x.
∴在直角△ABF中,AB2+AF2=BF2,即62+(8﹣x)2=x2,
解得x=,
即DG=BF=,
故答案为:
练习册系列答案
相关题目
【题目】某学校组织了“热爱宪法,捍卫宪法”的知识竞赛,赛后发现所有学生的成绩(总分100分)均不低于50分,为了解本次竞赛的成绩分布情况,随机抽取若干名学生的成绩作为样本进行整理,并绘制了不完整的统计图表,请你根据统计图表解答下列问题.
学校若干名学生成绩分布统计表
分数段(成绩为x分) | 频数 | 频率 |
50≤x<60 | 16 | 0.08 |
60≤x<70 | a | 0.31 |
70≤x<80 | 72 | 0.36 |
80≤x<90 | c | d |
90≤x≤100 | 12 | b |
(1)此次抽样调查的样本容量是 ;
(2)写出表中的a= ,b= ,c= ;
(3)补全学生成绩分布直方图;
(4)比赛按照分数由高到低共设置一、二、三等奖,若有25%的参赛学生能获得一等奖,则一等奖的分数线是多少?