题目内容

【题目】如图,把八个等圆按相邻两两外切摆放,其圆心连线构成一个正八边形,设正八边形内侧八个扇形(无阴影部分)面积之和为S1 , 正八边形外侧八个扇形(阴影部分)面积之和为S2 , 则 =(

A.
B.
C.
D.1

【答案】B
【解析】解:∵正八边形的内角和为(8﹣2)×180°=6×180°=1080°,
正八边形外侧八个扇形(阴影部分)的内角和为360°×8﹣1080°=2880°﹣1080°=1800°,
= =
故选:B.
先根据正多边形的内角和公式可求正八边形的内角和,根据周角的定义可求正八边形外侧八个扇形(阴影部分)的内角和,再根据半径相等的扇形面积与圆周角成正比即可求解.考查了扇形面积的计算,求不规则的图形的面积,可以转化为几个规则图形的面积的和或差来求.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网