题目内容

【题目】已知抛物线y=x2+bx﹣3(b是常数)经过点A(﹣1,0).

(1)求该抛物线的解析式和顶点坐标;

(2)P(m,t)为抛物线上的一个动点,P关于原点的对称点为P'.

当点P' 落在该抛物线上时,求m的值;

当点P' 落在第二象限内,P'A2取得最小值时,求m的值.

【答案】(1)(1,-4)(2)

【解析】试题分析

(1)把点A(-1,0)代入抛物线y=x2+bx﹣3解得b的值,即可得到抛物线的解析式;把所得解析式配方化为“顶点式”即可得到抛物线的顶点坐标;

(2)①由点P的坐标(m,t)可得点P′的坐标为(-m,-t),把两点的坐标分别代入(1)中所求抛物线的解析式可得:t=m2﹣2m﹣3,t=﹣m2﹣2m+3,由此可得m2﹣2m﹣3=﹣m2﹣2m+3,解此方程即可求得m的值;

P(m,t)在抛物线上可得m2﹣2m=t+3结合A(﹣1,0),P′(﹣m,﹣t可得P′A2=(﹣m+1)2+(﹣t)2=m2﹣2m+1+t2=t2+t+4=(t+2+P′(﹣m,﹣t)在第二象限,抛物线顶点坐标为(1,-4)可求得﹣4≤t<0,由此可得t=﹣时,P′A2有最小值,把t=﹣代入 t=﹣m2﹣2m+3解方程即可求得此时m的值.

试题解析

(1)∵抛物线y=x2+bx﹣3经过点A(﹣1,0),

∴0=1﹣b﹣3,解得b=﹣2,

抛物线解析式为y=x2﹣2x﹣3,

∵y=x2﹣2x﹣3=(x﹣1)2﹣4,

抛物线顶点坐标为(1,﹣4);

(2)①P(m,t)在抛物线上可得t=m2﹣2m﹣3,

P′P关于原点对称,

∴P′(﹣m,﹣t),

P′落在抛物线上,

∴﹣t=(﹣m)2﹣2(﹣m)﹣3,即t=﹣m2﹣2m+3,

∴m2﹣2m﹣3=﹣m2﹣2m+3,解得m=m=﹣

由题意可知P′(﹣m,﹣t)在第二象限,

∴﹣m<0,﹣t>0,即m>0,t<0,

抛物线的顶点坐标为(1,﹣4),

∴﹣4≤t<0,

∵P在抛物线上,

∴t=m2﹣2m﹣3,

∴m2﹣2m=t+3,

∵A(﹣1,0),P′(﹣m,﹣t),

∴P′A2=(﹣m+1)2+(﹣t)2=m2﹣2m+1+t2=t2+t+4=(t+2+

t=﹣时,P′A2有最小值,

∴﹣=m2﹣2m﹣3,解得m=m=

∵m>0,

∴m=不合题意,舍去,

∴m的值为

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网