题目内容

【题目】如图,在矩形ABCD中,连接对角线AC、BD,将△ABC沿BC方向平移,使点B移到点C,得到△DCE.
(1)求证:△ACD≌△EDC;
(2)请探究△BDE的形状,并说明理由.

【答案】
(1)证明:∵四边形ABCD是矩形,

∴AB=DC,AC=BD,AD=BC,∠ADC=∠ABC=90°,

由平移的性质得:DE=AC,CE=BC,∠DCE=∠ABC=90°,DC=AB,

∴AD=EC,

在△ACD和△EDC中,

∴△ACD≌△EDC(SAS)


(2)解:△BDE是等腰三角形;理由如下:

∵AC=BD,DE=AC,

∴BD=DE,

∴△BDE是等腰三角形


【解析】(1)由矩形的性质得出AB=DC,AC=BD,AD=BC,∠ADC=∠ABC=90°,由平移的性质得:DE=AC,CE=BC,∠DCE=∠ABC=90°,DC=AB,得出AD=EC,由SAS即可得出结论;(2)由AC=BD,DE=AC,得出BD=DE即可.
【考点精析】利用矩形的性质和平移的性质对题目进行判断即可得到答案,需要熟知矩形的四个角都是直角,矩形的对角线相等;①经过平移之后的图形与原来的图形的对应线段平行(或在同一直线上)且相等,对应角相等,图形的形状与大小都没有发生变化;②经过平移后,对应点所连的线段平行(或在同一直线上)且相等.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网