题目内容

【题目】如图,RtABC中,∠BCA=90°,AC=BC,点DBC的中点,点F在线段AD上,DF=CD,BFCAE点,过点ADA的垂线交CF的延长线于点G,下列结论:①CF2=EFBF;②AG=2DC;③AE=EF;④AFEC=EFEB.其中正确的结论有________

【答案】①②④.

【解析】根据等边对等角的性质求出∠DCF=∠DFC,然后求出DF=DB,根据等边对等角求出∠DBF=∠DFB,然后求出∠BFC是直角,根据直角三角形的性质求出△BCF和△CEF相似,根据相似三角形对应边成比例列式整理即可得到①正确;根据互余关系求出∠G=∠ACG,再根据等角对等边的性质求出AG=AC,然后求出AG=BC,然后利用“角角边”证明△BCE和△AGF全等,根据全等三角形对应边相等可得AG=BC,从而判断②正确;根据角的互余关系可以求出∠EAF+∠ADC=90°,∠AFE+∠DFC=90°再根据∠ADC的正切值为2可知∠ADC≠60°,然后求出∠FDC≠∠DFC,然后求出∠EAF≠∠EFA,从而得到AE≠EF,判断出③错误;根据根据直角三角形的性质求出△CEF和△BCE相似,根据相似三角形的对应边成比例列式求出EC2=EFEB,再根据全等三角形对应边相等可得AF=CE,从而判断出④正确.

解:∵DF=CD,

∴∠DCF=∠DFC,

∵AC=BC,点D是BC的中点,

∴DF=DB=DC,

∴∠DBF=∠DFB,

又∵∠DBF+∠DFB+∠DFC+∠DCF=180°,

∴∠BFC=×180°=90°,

∴CF⊥BE,

∴Rt△BCF∽Rt△CEF,

=

∴CF2=EFBF,故①正确;

∵AG⊥AD,

∴∠G+∠AFG=90°,

又∵∠ACG+∠DCF=90°,∠DCF=∠DFC=∠AFG,

∴∠G=∠ACG,

∴AG=AC,

∵AC=BC,

∴AG=BC,

又∵∠CBE=∠ACG,

∴∠CBE=∠G,

在△BCE和△AGF中,

∵∠GAF=∠BCE=90°,∠CBE=∠G,AG=BC,,

∴△BCE≌△AGF(AAS),

∴AG=BC,

∵点D是BC的中点,

∴BC=2DC,

∴AG=2DC,故②正确;

根据角的互余关系,∠EAF+∠ADC=90°,∠AFE+∠DFC=90°,

∵tan∠ADC=2,

∴∠ADC≠60°,

∵∠DCF=∠DFC,

∴∠FDC≠∠DFC,

∴∠EAF≠∠EFA,

∴AE≠EF,故③错误;

∵∠ACB=90°,CF⊥BE,

∴△CEF∽△BCE,

=

∴EC2=EFEB,

∵△BCE≌△AGF(已证),

∴AF=EC,

∴AFEC=EFEB,故④正确;

所以,正确的结论有①②④.

“点睛”本题考查了相似三角形的判定与性质,全等三角形的判定与性质,等腰直角三角形的性质,根据等角对等边以及等边对等角的性质求出AG=AC,然后证明△BCE和△AGF全等是证明的关键,也是本题的难点.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网