题目内容
如图,Rt△ABC中,∠ACB=90°,AC=6 cm,BC=8 cm,动点P从点B出发,在BA边上以每秒5 cm的速度向点A匀速运动,同时动点Q从点C出发,在CB边上以每秒4 cm的速度向点B匀速运动,运动时间为t秒(0<t<2),连接PQ.
(1)若△BPQ与△ABC相似,求t的值;
(2)连接AQ、CP,若AQ⊥CP,求t的值;
(3)试证明:PQ的中点在△ABC的一条中位线上.
(1)若△BPQ与△ABC相似,求t的值;
(2)连接AQ、CP,若AQ⊥CP,求t的值;
(3)试证明:PQ的中点在△ABC的一条中位线上.
(1)t=1或;(2);(3)证明见解析.
试题分析:(1)分两种情况讨论:①当△BPQ∽△BAC时, ,当△BPQ∽△BCA时, ,再根据BP=5t,QC=4t,AB=10cm,BC=8cm,代入计算即可.
(2)过P作PM⊥BC于点M,AQ,CP交于点N,则有PB=5t,PM=3t,MC=8-4t,根据△ACQ∽△CMP,得出 ,代入计算即可.
(3)过P作PD⊥AC于点D,连接DQ,BD,BD交PQ于点M,过点M作EF∥AC分别交BC,BA于E,F两点,
证明四边形PDQB是平行四边形,则点M是PQ和BD的中点,进而由得到点E为BC的中点,由得到点F为BA的中点,因此,PQ中点在△ABC的中位线上.
试题解析:(1)①当△BPQ∽△BAC时,
∵ ,BP=5t,QC=4t,AB=10cm,BC=8cm,∴,解得t=1;
②当△BPQ∽△BCA时,∵,∴ ,解得.
∴t=1或时,△BPQ与△ABC相似.
(2)如答图,过P作PM⊥BC于点M,AQ,CP交于点N,则有PB=5t,PM=3t,MC=8-4t,
∵∠NAC+∠NCA=90°,∠PCM+∠NCA=90°,∴∠NAC=∠PCM且∠ACQ=∠PMC=90°,
∴△ACQ∽△CMP.∴.∴ ,解得:.
(3)如答图,过P作PD⊥AC于点D,连接DQ,BD,BD交PQ于点M,
则,
∵,∴PD=BQ且PD∥BQ.∴四边形PDQB是平行四边形.∴点M是PQ和BD的中点.
过点M作EF∥AC分别交BC,BA于E,F两点,
则,即点E为BC的中点.
同理,点F为BA的中点.
∴PQ中点在△ABC的中位线上.
练习册系列答案
相关题目