题目内容
已知a,b,c是△ABC的三边,x2-2(a+b)x+c2+ab=0是关于x的一元二次方程,
(1)若△ABC是直角三角形,且∠C=90°,试判断方程实根的个数;
(2)若方程有两个相等的实数根,试求∠C的度数.
(1)若△ABC是直角三角形,且∠C=90°,试判断方程实根的个数;
(2)若方程有两个相等的实数根,试求∠C的度数.
(1)∵a,b,c是△ABC的三边,x2-2(a+b)x+c2+ab=0是关于x的一元二次方程,
∴△=4a2+4b2+4ab-4c2,
∵△ABC是直角三角形,且∠C=90°,
∴a2+b2=c2,
∴△=4ab>0,
故方程有两个不等实数根;
(2)∵方程有两个相等的实数根,
∴△=4a2+4b2+4ab-4c2=0,
cosC=
=-
∴∠C=120°.
∴△=4a2+4b2+4ab-4c2,
∵△ABC是直角三角形,且∠C=90°,
∴a2+b2=c2,
∴△=4ab>0,
故方程有两个不等实数根;
(2)∵方程有两个相等的实数根,
∴△=4a2+4b2+4ab-4c2=0,
cosC=
a2+ b2-c2 |
2ab |
1 |
2 |
∴∠C=120°.
练习册系列答案
相关题目