题目内容

已知a,b,c是△ABC的三边,x2-2(a+b)x+c2+ab=0是关于x的一元二次方程,
(1)若△ABC是直角三角形,且∠C=90°,试判断方程实根的个数;
(2)若方程有两个相等的实数根,试求∠C的度数.
(1)∵a,b,c是△ABC的三边,x2-2(a+b)x+c2+ab=0是关于x的一元二次方程,
∴△=4a2+4b2+4ab-4c2
∵△ABC是直角三角形,且∠C=90°,
∴a2+b2=c2
∴△=4ab>0,
故方程有两个不等实数根;

(2)∵方程有两个相等的实数根,
∴△=4a2+4b2+4ab-4c2=0,
cosC=
a2b2-c2
2ab
=-
1
2

∴∠C=120°.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网