题目内容
【题目】如图,在菱形ABCD中,∠BAD=84°,AB的垂直平分线交对角线AC于点F,垂足为E,连接DF,则∠CDF等于( )
A.64°
B.54°
C.60°
D.84°
【答案】B
【解析】解:连接BD,BF,
∵∠BAD=84°,
∴∠ADC=96°,
又∵EF垂直平分AB,AC垂直平分BD,
∴AF=BF,BF=DF,
∴AF=DF,
∴∠FAD=∠FDA=42°,
∴∠CDF=96°﹣42°=54°.
故选B.
【考点精析】解答此题的关键在于理解线段垂直平分线的性质的相关知识,掌握垂直于一条线段并且平分这条线段的直线是这条线段的垂直平分线;线段垂直平分线的性质定理:线段垂直平分线上的点和这条线段两个端点的距离相等,以及对菱形的性质的理解,了解菱形的四条边都相等;菱形的对角线互相垂直,并且每一条对角线平分一组对角;菱形被两条对角线分成四个全等的直角三角形;菱形的面积等于两条对角线长的积的一半.
练习册系列答案
相关题目