题目内容

【题目】某地下车库出口处安装了两段式栏杆,如图1所示,点A是栏杆转动的支点,点E是栏杆两段的联结点.当车辆经过时,栏杆AEF最多只能升起到如图2所示的位置,其示意图如图3所示(栏杆宽度忽略不计),其中ABBC EFBCAEF=143°,AB=AE=1.3米,那么适合该地下车库的车辆限高标志牌为多少米?(结果精确到0.1.参考数据:sin 37° ≈ 0.60,cos 37° ≈ 0.80,tan 37° ≈ 0.75)

【答案】适合该地下车库的车辆限高标志牌为2.1米

【解析】试题分析:过点EEG⊥BC于点GAH⊥EG于点H,则∠AHE=90°.先求出∠AEH=53°,则∠EAH=37°,然后在△EAH中,利用正弦函数的定义得出EH=AEsin∠EAH,则栏杆EF段距离地面的高度为:AB+EH,代入数值计算即可.

试题解析:过点EEG⊥BC于点GAH⊥EG于点H

∵EF∥BC

∴∠GEF=∠BGE=90°

∵∠AEF=143°

∴∠AEH=53°

∴∠EAH=37°

△EAH中,AE=1.2∠AHE=90°

∴sin∠EAH="sin" 37°

∴EH=1.2×0.6=0.72

∵AB⊥BC

四边形ABGH为矩形.

∵GH=AB=1.2

∴EG=EH+HG=1.2+0.72=1.92≈1.9

答:适合该地下车库的车辆限高标志牌为1.9米.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网